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I. Phys. A Math. Gen. 25 (1992) 4&743€4. Printed in the UK 

State sum invanants of compact 3-manifolds with boundary 
and 6j-symbols 

M Karowskit, W Miillert and R Schradert 
t lnstitut fur theoretische Phyik, Freie Universitl Berlin, Federal Republic of Germany 
$ Max Planck lnstitut fih Mathematik, Bonn, Federal Republic of Germany 

Received 20 September 1991 

Abslrad. We exlend the wmbinatorial consmaion of invariants of smooth, compact, 
closed 3-manifolds as given hy " i e v  and Vir0 to obtain invariants of %manifolds with 
boundary. The technique uses quantum 6j-symbols associated to the quantized universal 
enveloping algebra U,(sl(Z, C ) )  (p a rod of unity) to give a construction of a state sum 
for given triangulation. This state sum is then invariant under subdivisions and isotopies 
of the boundary. Our methods also lead to a simplified proof of'the main result of 
ntraev and Vir0 that the slate sum is independent of the triangulation and hence gives 
rise to an invariant of the manifold. We use surgery to calculate the state sum for some 
(dosed) manifolds. Our results also confirm a recent finding of nraev, which relates 
this theory lo the topological quantum field theory with a ChernSimons action in the 
sense of Witteen. 

1. Introduction 

In an article 'hraev and Vu0 [16] have constructed non-trivial 'quantum' invariants 
of compact 3-manifolds M in the form of state sums (called partition functions in 
statistical physics and vacuum functionals in quantum field theory) associated with the 
quantized universal enveloping algebra Uq(s1(2,C)), where q is a complex root of 
..":cl -8 " "--.":.. ,I..,.--- 1- . " 17.- -I"+* *..- := F2-t ,infind h. ., ".lnm.,n ulrrry "1 a cTIL'l"I "G~LGG * I  

tion X of M and then shown to be independent of the triangulation thus giving rise 
to a well defined invariant of M, which thus depends on q. This result may be viewed 
as a rigorous mathematical construction of what is called topological quantum field 
theory (see also [4]). In fact, in the language of physicists, a triangulation corresponds 
to the introduction of a high-energy cut-off. Now topological quantum field theo- 
ries have trivial dynamics, are scale-invariant and more generally independent of any 
metria. Invariance under subdivisions is just the statement that the renormalization 
group transformation is trivial. This result suggests that the familiar techniques from 
algebraic topology should become useful to construct and discuss other topological 
quantum field theories. 

The purpose of this article is to introduce observables into the 'Ihraev-Viro ap- 
proach in the form of certain closed (piecewise) smooth 2-submanifolds forming the 
boundary a M  of M, whose 'expectation values' are invariants. In the case that 
the 2-submanifolds consists of several copies of 2-tori, these 2-tori may be viewed 
as blown-up links, i.e. the boundaries of tubular neighbourhoods of such links. In- 
variance is then just the statement that these 2-tori around the links may be chosen 
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arbitrarily 'small'. In our construction of the state sum, BM is not assumed to be 
orientable, the case M = RPa x [0,1], BA4 = RPZ x {0} U RPZ x {1) being an 
example. 

Now we briefly outline our approach. Let X be a triangulation of M which 
induces a triangulation ax of B M .  Then to X we associate a state sum Z ( X )  
using in the construction 6j-symbols within the abstract and more general set-up 
of 'hraev and Viro, for which the quantum 6j-symbols of Uq(s1(2,C)) form an 
example. Our construction agrees with that in [la] for the case BM = 0. For 
sufficiently fine triangulations (a notion which we will make precise below), we show 
that this state sum is independent of the triangulation and hence defines a state 
sum Z ( M ) .  Moreover, we show that the state sum Z ( X )  is invariant under simple 
isotopy of the boundary ax. We recall that basically a simple isotopy of ax consisb 
of successive addition to X of 3-simplexes u3 E X which intersects BX in exactly 

Roughly speaking the construction of the state sum Z ( X )  goes as follows. As in 
[16] an edge colouring of X is a map u1 - j ( d )  from the set of 1-simplexes of X 
into a finite set I. This is a set of representations for the quantum group case. For 
suitable edge colourings, one associates to each 3-simplex u3 the 6j-symbol 

T (1 $ T $ 3) 2-simp!exes i!! COmmon with ax. 

where U: and u : + ~  ( k  = 1,2,3) are opposite edges in u3. In addition we define a 
vertex colouring to be a map J : U' ,-, J ( u o )  from the set of vertices of ax into I. 
For a suitable edge colouring j and suitable vertex colouring 1 one associates to each 
2-simplex uz E ax the 6j-syiibol 

where up are the vertices opposite to the edges U: ( k  = 1,2,3) of the 2-simplex uz. 
We multiply the 6j-symbols (1.1) over all 3-simplexes u3 in X and the 6j-symbols 

cec,&i 
weight (similar to the procedure in [16]). The state sum is then given by summing 
over all j and for which the 6j-symbols (1.1) and (1.2) are defined and non-zero. 
Note t h s  in contrast to lattice gauge theories where the sum is taken over the group, 
here the sum is taken over the dual variables, namely the representations of the 
quantum group. 

sequence of five polynomial relations involving five 6j-symbols, which follow from 
a Biedenharn-Elliot relation. In fact these relations can be viewed as combina- 
torial versions of a local Stokes theorem. It is remarkable that in the context of 
Regge calculus a Stokes-theorem-type relation is also responsible for the invariance 
of Lipschitz-Killing curvatures on PL spaces under subdivisions [l0,3]. Invariance un- 
der subdivisions is then a consequence of the Stokes theorem mentioned above and 
relies on the following arguments. Consider a subdivision of X localized in Y C X. 
There are two cases: 

(i) If Y is near the boundary BX,  we shift ax using the invariance under 
isotopies of BX such that the state sum has no contributions from Y. 

(;.2] o ~ e i  2-siT,piEes b-, BA". c,e iesii:"u,g ~ ~ ~ i e ~ i o i i  . .  ij r,.&@p,& *y. 

The invariance of the state sum under Lwtopies of the boundary is an easy con- 
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(ii) If it is not near the boundary OX, using our Stokes theorem we create a hole 
close to Y and obtain again case (i). In fact by Stokes theorem the contributions 
from the interior of Y are replaced by a contribution on OY. 

One natural generalization of our approach would be to work with other q-Lie 
groups [SI (see also (41). Secondly one may introduce on the 2-manifolds OM 
additional loops (links) L’ which moss the magnetic flux tines. If the statistical 
weights of these crossings are given by R-matrices, the state sum is q-invariant and 
may be formulated analogously to Z t .  Another interesting program is to consider the 
‘semiclassical’ limit q + 1. This could shed some new light on the observation in [9], 
which relates (classical) 6j-symbols to Regge calculus. 

In analogy to ’lbraev and Vir0 one can freeze the colouring on parts of 8M in 
order to discuss cobordism theory. In this paper we do not discuss this issue. 

The paper is organized as follows. In section 2 we define the state sum 2 for 
3-manifolds with boundary and prove invariance under isotopy of the boundary. We 
start with a given triangulation and prove independence under Alexander moves. In 
section 3 the state sum Z is calculated explicitly for some examples using surgery 
techniques. 

2. Construction of a state sum 

As announced in the introduction, in this section we will work within the general ax- 
iomatic set-up of ’hraev and Viro. In this section we will generalize this construction 
and in the next section we will explicitly calculate the state sum for some examples. 

For the convenience of the reader and in order to establish notation, we give a 
brief review of the set-up in [16]. Let IC be a commutative ring with unit. By K’ 
we denote the set of invertible elements in K. Let I be a finite set, w E K‘ a 
distinguished element and i c) wi a map from I into IC*. We set 

We assume there is given a non-empty set of unordered triples ( i , j ,  k) E I called 
admissible. We set & ( i , j , k )  = 1 if ( i , j , k )  is admissible and zero otherwise. An 
ordered 6-tuple (i, j ,  k, 1 ,  m, n) is called admissible if the four unordered 3-triples 
( i , j , k ) ,  ( k , l , m ) , ( i , m , n )  and ( j , l , n )  areadmissible. Toeachsuchadmissible6- 
tuple we assume there is associated an element of IC  the abstract 6j-symbol denoted 
bY 

I f  : :I 
satisfying the following symmetry relations 

t Aita cmpktion of our calculations we received a prsprint (141 whosc antent is also outlined in [15] 
and where this p r o p m  has been developd. 
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In addition we impose three conditions. First, the following 'orthogonality' relations 
are supposed to hold: 

(2.3) 

The summation is such that all symbols are defined, i.e. both 6-tuples (i, j, k, 1 ,  m, n) 
and (i,j, k, 1 ,  m, n') are admissible. 

Secondly we assume that 

w 2  = w;'z w!wj6(i,j, k) (2.4) 
i .j 

hoids for aii k E i. 
The following discussion relates G2 and w2. Define c(1, k) = c(k, 1) E IC by 

W? 

; "7% 

= - + 6 ( i , m , k ) b ( l , m , k )  = w~c(m,k)6(1,m,k). 

This gives 

c(l,k)=c(m,k) 

Fe- -11 oA-ko:hlm +-:-In- I L  I - \  
,"I a" (L"UIlYY.".C n r y r G 3  (&,&,,,',. 

Assume now I to be irreducible [16], i.e. to any ( i ,  j) E I there exists a sequence 
( 1 ,  ,..., 1 , )s  Iwith1, = i , 1 , ,  =jand6(1 , ,1 ,+ , , 1 ,+ , )=1fora l l ( l$v$n-2 ) .  
An easy induction shows that c( 1, k) = c E I< for all (k, 1 )  E I such that (2.5) takes 
the form 

TW;26!i;j,k) = cwjw;. (2.7) 
7 

W ~ = W ; ' ~ W ~ Z W : ~ ( ~ , ~ , ~ ) = C G ~  (2.8) 

Now (2.1), (2.4) and (2.7) combined give 

i , i  

and hence c # 0 since w E K' by assumption. Actually c E I<' since c-' = G2w-'.. 
This in turn implies c2 = c - 1 ~ ~ .  Since wjw: E K',  the right-hand side of (2.7) is 
non-zero. This proves: 



Compact 3-manifolds with boundaty 4851 

Lemma 2.1. Let I be irreducible and assume (2.3) and (2.4) to hold. Then to each 
( i , j )  E I there exists a k E I such that (i, j ,  k) is admissible. Also ,jj2 E K' and 

(2.9) 

holds for all ( j ,  k )  E I .  

Uq(s1(2,C)) with q = exp(i?rs/r) (r  and s E Z relatively prime) one has 
Finally we remark that for the special case of quantum 6j-symbols associated to 

1 r 
2 2 

i = O , - , l , .  .. ,- - 1) W i  = ( G ) Z '  

and 

(2.8') 

such that in particular c = 1. 

polynomial relation to hold in K (the Biedenham-Elliot identity for 6j-symbols): 
From now on we will assume I to be irreducible. Finally we mume the following 

again with restrictions similar to those in relation (2.3). We depict thii graphically 
in figure 1 where the 6-tuple ( i , j , k , l , m , n )  is associated to the six edges of a 
tetrahedron and the elements A,  B ,  C, D E I are associated to the vertices. Note 
that i and 1 belong to opposite edges and that in the triangle formed by the edges 
associated to i , j  and k the vertex C is opposite to the edge k, etc. 

C 

Flyre 1. A tetrahedron with 6-tuple (i, j, C,I, m ,  n) 
and 4-tuple ( A ,  B, C, D) associated to the edges and 
vertices, respectively, corresponding to (2100-4). 

Using (2.2), (2.3) and (2.4) one deduces from (2.10,) four addition relations given 
as 

Ik  1 m l l j  n I I I i  m n /  
' D A  B D B C  D C A 
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Let M be a 3-manifold and X a triangulation of M which induces a triangulation 
ax of aM. 

Defi#bn 2.2. An edge colouring of X is a map j : u1 ++ j ( d )  from the set 
of nonaiented 1-simplexes u1 of x into I. A vertex colouring of ax is a map 
- J : uo - J ( u O )  from the set of vertices of ax into I .  

To a given edge colouring of X and to every non-oriented 3-simplex u3 E X we 
associate the 6j-symbol 

(2.11) 

provided the 6-tuple ( j ( u : ) , . .  . , j ( u i ) )  is admissible. Here ut and of,, 
( i  = 1,2,3) are opposite edges in Bo3. 

To a given edge colouring of X, vertex colouring of 8 X  and non-oriented 2- 
simplex u2 E ax we associate the 6j-symbol 

(2.12) 

provided the 6-tuple ( j ( u ~ ) , j ( u ~ ) , j ( u ~ ) , ~ ( u ~ ) , J ( u ~ ) , ~ ( u ~ ) )  is admissible. Here 
up are the vertices opposite to the edges u:(i = 1,2,3). Given an edge colouring of 
X and a vertex colouring of ax we define the 'BoltzmannGibbs' weight factor 

W ( X ) ( i , I ) =  n n w:( .o)  n W,2(&) n (6i)(u3) n ( 6 t L ) ( 0 2 )  
OOEX OOEBX U I E X  0 " X  .=€ax 

(2.13) 

provided again that all expressions on the right-hand side are defied. 
For a given triangulation X of M as above we define the state sum to be given 

bY 
(2.14) 

Here summation is over all such j and J for which the BoltzmannGibbs factor 
(2.13) is defied. For the special case 8M = 0, this agrees with the definition of 
'hraev and Viro. 
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Remark 2.3. A properly of the state sum (2.14) is obvious: if M and hence X 
is not connected, the state sum is the product of the state sums for the connected 
components of X with the corresponding decomposition of ax. For example 

Z ( X ,  U X , )  = Z ( X , )  * Z ( X , )  if X I  n X ,  = 0 .  (2.15) 

We now come to invariance under isotopies of the boundary ax of X .  Basically 
this amounts to introducing a new triangulation of M and a M .  By definition, an 
admissible elementary simple isotopy of OX consists of the addition (or subtraction) 
of a 3-simplex u3 E 2 to x with the properly that a03 n ax contains exac@ T 

2simplexes (1 < T < 3) in X .  Addition and subtraction are thus operations which 
are inverse to each other. In the case of our addition this changes X,,, = X to 
X,,, = X U u3 and ax,,, is obtained from ax,,, = ax by replacing the T 

2-simplexes in aa3 n ax,,, by the remaining (4 - T )  Zsimplexes in au3. 

Theorem 2.4. The state sum (2.14) is invariant under admissible, elementaq simple 
isotopies of ax. 

Proof. We only consider the addition of a 3-simplex since the argument for the 
inverse operation given by a subtraction is similar. We will relate these operations 
to the relations (2.104-v) ( T = 1,2,3) read from right to left. We now look at the 
individual terms in the state sum. Only if T = 1, X,,, has an additional vertex 

,compared to X,,,. This is accounted for by the w z  term in (2.14). To exhibit the 
other changes, we extend figure 1 by figure 2. 

. 

Thus j ( [u ," ,  U:]) = i ,  etc and J(a,") = A, etc. We then make the convention that 
for T = 1 the 2-simplex [U,", U;, U:] is replaced by the remaining three 2-simplexes 
and similarly for T = 2,3. From this the proof of the claim follows immediately if we 
make the choice 

ine, - - and L e ,  = &old On xnew " xoM ' (2.16) 

So far we have not used relation (2.104). The geometric relevance of this relation 
is as follows. Consider the case where X is just a 3-simplex u3. This 3-simplex is 
removed using the rule (2.10,) giving the following: 
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Theorem 2.5. With the notation and condition just employed the state sum satisfies 
the relation 

Z(u3)= -= Tila c- 1 . 
WZ (2.17) 

The converse result states what happens if one cuts out one 3-simplex u3. We 
apply the tule (2.10,) to (6j)(u3) and replace it by four 6j-symbolS associated to the 
four triangles on Bu3, thus-creating a 'hole' in X. 

%omm 2.6. The following relation is valid if u3 is contained in the interior of X: 

(2.18) 

Theorems 2.4-2.6 represent the Stokes theorem referred to in the introduction. 
The next step is to prove invariance under subdivisions. As in 1161 we will resort 

to Alexander moves 111. Actually any local subdivision will do. An Alexander move 
is defiied as follows. Let U' be an arbitrary 1-simplex in X and let s t (ul)  be its 
star. Let U: be the barycentre of U'. Outside i n t  st(u') = st(u')\ast(u') no new 
simplexes are introduced. In addition to U: the new simplexes in int s t (ul)  are of 
the form [u,O,u] where U is any simplex in B s t ( d ) .  

By a well known theorem [l], two triangulations of M have a common subdivision 
under suitable iteration of Alexander moves on each of these two triangulations. We 
say that a triangulation X of M (inducing a triangulation BX of B M )  is sufficiently 
f i e  if the following two conditions hold. 

(a) the star of any 1-simplex not intersecting BX is homeomorphic to the closed 
unit ball in R3. 

@) For any 1-simplex u1 in X which intersects BX non-trivially, 
B(X\(int st(u') U in t (0X n Bst(u')))) is simply isotopic to ax, i.e. may be 
obtained from BX by a succession of elementary simple isotopies. 

Given any 3-manifold M there is obviously a sufficiently fine triangulation X of 
M .  Also any subdivision of such a f i e  triangulation of M is again a fine triangula- 
tion. 

Theorem 2.7. Given a sufficiently fine triangulation X of M ,  the state sum Z ( X )  
is invariant under Alexander moves. 

hf. Assume first that u1 intersects BX non-trivially. We use the invariance of 
theorem 2.4. By this theorem and conditions (a) and (b) 

Z ( X  \ in t  u3) = w'z(x). 

Z ( X )  = Z ( 2 )  (2.19) 

where 2 is obtained from X by removing all simplexes in int st(o') Uint(BX n 
Bst(ul)). In particular aX is obtained from ax by replacing in t (BXnBst (d) )  by 
its complement in B s t ( d ) .  We now perform the Alexander move associated to U'. 
This does not change the right-hand side of (2.19). Then we perform a deformation 
in the reverse order by adding all the new 3-simplexes in int st(ul) .  Again this does 
not change the state sum. This concludes the proof for the case that u1 intersects 
ax non-trivially. Finally let U' E X be such that it does not intersect BX. We now 
use only condition (a) coupled with relations (2.10,) ( k  = 0,1,2,3) in the following 



Compact 3-manifolds with boundw 4855 

way. Pick an arbitrary 3-simplex ut in st(ul). We now apply theorem 2.6 to create 
a ‘hole’ in X and obtain 

Z(X\int  U;) = w’z(x). (2.20) 

Now let uj” E X (0 < j < n) be the 3-simplexes in st(ul)  such that U,” and 
U , ” + ~ ( O  < j < n) with u:+~ = ut have exactly one 2-simplex in common. We 
now inductively remove u,S from X (1 6 j < n - 1) by applying the rule (2.101). 
Again this does not change the state sum (2.14). Finally we remove U: by applying 
the rule @.lo2). This also does not change the state sum (2.11). Thus we have 
arrived at a new space X,,, = X\int s t (ul)  with an additional boundary, i.e. 
ax,, = BX U Bst(ul). In other words, we apply our Stokes theorem and have 

Z(X\int  s t ( u ’ ) )  = w 2 z ( x ) .  (2.21) 

We now perform the Alexander move associated to ul. This does not affect the 
left-hand side of (2.21). We now work with Stokes theorem in the opposite direction 
in the following way. 

First observe that this .Alexander move creates 2( n -t 1) 3-simplexes out of the 
original (n + 1) 3-simplexes of st(u’). More precisely, write U’ as ul = [U!, U;] 
and let U: be the barycentre and set U: = [u t ,uf ] ,  U: = [u:,ui]. Let ~ j ” , ~  (0 < 
j < n,i = 1,2) be the new 3-simplexes such that ~ j ” , ~  (0 < j < n) form the star 
of U; ( i  = 1,2). Also the numeration is such that U,”,] and result from the 
subdivision of U,”. We now add ugl to X\int st(u’) by using the rule (2.14). This 
does not change (2.21). (Note that we have added the new vertex ut during this 
process.) Then we iteratively add (1 < j < n - 1) using rule (2.14) and then 
u : , ~  by using rule (2.101). This again does not change (2.21). In the next step we 
add U& by using rule (2.10,) followed by adding successively u ; , ~  (1 < j < n - 1) 
with rule (2.10,) and finally u : , ~  using rule (2.100). This final step kills the extra w a  
factor appearing in (2.21). The invariance of the state sum under Alexander moves 
is thus completed. 

The invariance of the state sum under subdivisions means that it does not depend 
on the specific triangulation X and hence defines an invariant of the 3-manifolds M: 

Z ( M )  = Z(X). (2.22) 

In particular we may use theorems 2.4-2.6 and write (2.17) and (2.18) BS 

Z( M U D 3 )  = c-’ Z( M) 

Z ( M  \ 0 3 )  = w Z Z ( M )  

(2.17’) 

(2.18‘) 

where a unit ball D3 is added to M or cut out from M (D3 c M\BM) respectively. 
In the next section we shall explicitly compute the state sums for a selected set 

of examples. 
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3. Calculation of explicit examples 

In this section we use two procedures, which may be called combinatorial surgery, 
to calculate the state sum Z ( M )  for some examples. The first procedure (‘handle 
cutting’) applies to manifolds M which contain a handle 

M = A? U (0’ x [0,1]) such that genus(Bf i )  = genus(BM) - 1 .  (3.1) 

The second type of surgery will be applied if 

M = fi U ( S 2  x [O,l]) with B f i  E BMu S 2 u S 2 .  (3.2) 
We also show that the state sum for closed, compact 3-manifolds satisfies a rela- 
tion similar to the one obtained by Witten in his discussion of the ChernSimons 
theory [17]. 

We choose M such that a M  is a closed, compact, oriented, connected manifold 
of genus g ( B M )  and Euler characteristics x ( B M )  = 2 - 2 g ( B M )  and such that 
after suitable iterations of (3.1) fi E D3 holds (i.e. M = solid surface = geftllte 
pretzel). With these assumptions and c = zo2/2ir2 we have: 

Theorem 3.1. The state sum is given by 

Z ( M )  = c g ( B ‘ + J ) - 1 .  (3.3) 
Remark 3.2. Using the factorization property (2.15) and theorem 2.6 this result 
generalizes to the case where BM may be not connected and M may contain Nh 
holes E D3 (cf theorem 2.6) 

Z ( M )  = , z N . c - X ( S ‘ + J ) / z + N b ,  (3.4) 
Thin formula even holds for more general holes with boundary of genus # 0, if they 
are ‘compressible’, which means that relation (3.1) is fulfilled. 

Remark 3.3. In the context of Uq(s1(2,C)) we have c = 1 (see (2.8’)). 

Proof. We first consider the case M = D3 (the unit ball in R3) such that a M  E S2. 
Then by theorem 2.5 we have 

(3.5) 
Z ( D ~ ) = ~ =  752 C -1 

proving the claim for g = 0. We now proceed by induction of g, so let g 1. 
The following discussion allows us to perform combinatorial surgery. Consider the 
manifold D2 x [0,1] ( D 2  the unit disc in R2) triangulated as in figure 3. 
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We imagine this set D2 x [0,1] to be cut out one of the handles of M such that 
M\( D2 x [O, 4 )  = fi has a boundary afi with genus 3 = g - 1. Hence we want 
to look at 

.If n o I l m  n p / l d  1 m i l e  d e l l a  b c (  
F B E  F D E E D C  D B C C B A  

(3.6) 

i.e. the edge colourings k ,  1, b, e, p, o and the vertex colouring A, B, C ,  D, E ,  F 
are kept fixed in the following. We first perform the sum over a using (2.10,) in the 
form 

c w ' l e  a f k C l l U  E B A f i l a  C B A q=lb  E C A  IC y c  E C f B '  1 1  (3.7) 

This means we use invariance under deformations of a( D2 x [0,1]) of theorem 2.3: 

[ E ,  B ,  AI U [C, B ,  AI - [ E ,  C,  AI U [ E ,  C ,  Bl . 

Similarly, we, sum over n again using (2.10,) in the form 

and summing analogously over c we find 

(3.9) 

We now perform the sum over d and m using (2.3) and (2.7) to obtain 

(3.10) 

Comparing this with Z( fi) obtained from a triangulation induced by that of M ,  we 
have 

Z ( M )  = c Z ( A 2 ) .  (3.11) 

This concludes the induction and the proof of theorem 3.1 is completed. 
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I 
W 

a) b) 

Flgur~ 5. 
deforming B M .  

%e two-dimensional analogue of (a) cutting a hole (d (3.13)) and (b) 

In the next step we-mimic the surgery considered in [17]. As a special case of 
(3.2) for disconnected M I  and a2 let 

M = a, $s2 x (o,i]) U a, n Lf2 = 0 (3.12) 
S1 

(figure 4 gives the two-dimensional analogue). 
We apply the relations (2.10,) (0 < k < 3) in the set S2x[0, 11. Using theorem 2.6 

we introduce a hole D3 (the unit ball in R3) with boundary S2 (cf figure 5(a) as a 
two-dimensional analogue) 

Z ( M )  = w - ~ Z ( ~ )  with = M \ D 3 .  (3.13) 

Then we deform the hole using the invariance of theorem 2.4 according to fig- 
ure 5(b), such that fi, and f i 2  are connected by a tube of that type depicted in 
figure 3. Cutting this tube we obtain from (3.11) and (3.13) (cf figure 6(a)) 

(3.14) Z( M )  = w-zc Z( MI). Z( a2). 

a) S2 

F l y r e  6. The two-dimensional analogue of (a) cutting the manifold M and (b)  gluing 
back two >balls to the boundaries. 
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To proceed further, we glue D3 (viewed BS a 3-simplex) back to fi, and f i a ,  respec- 
tively, along the common boundary Y Sa to obtain Mi = Mi U D3 ( i  = 1,2)  (again 
figure 6(b) describes the two-dimensional analogue). By theorem 2.6 we have 

3-1 

Z ( f i i )  = W * Z ( M i )  (i = 1 , 2 ) .  (3.15) 

From (3.13)-(3.15) we conclude 

Z ( M ) =  w 2 c . Z ( M 1 ) . Z ( M a ) .  (3.16) 

Therefore we have the the following theorem, which compares with relation (4.2) 
in [17]. 

Theorem 3.4. With the above notations, the following relations are valid: 

-- Z ( M )  Z ( M d  Z ( M d  
Z(S3)  Z(S3)  Z(S3) 

i 
cwa 

Z( S3)  = - 

(3.17) 

(3.18) 

Z(S* x S') = 1. (3.19) 

Proof. Note that for M = S3 we also have MI Y Ma Y S3 (cf figures 5 and 6 for 
the two-dimensional analogue). Therefore (3.16) implies (3.18) and fiially (3.17). To 
prove (3.19), which compares with relation (4.31) in [17], we consider equation (3.2) 
for M = S2 x S' which means that also fi Y S a x  [O, l ] .  In analogy to relation (3.16) 
we have 

Z(S2 x SI) = w2c Z ( D 3  U fi U 0'). (3.20) 
51 SZ 

However, with D3 U fi U D3 I S3 and (3.18) we find (3.19). 

Remk3 .5 .  In the context of Uq(sl(2,C)) we have with p = exp(irrs/r) (r and s 
relatively prime) (see (2.8')) 

9 S' 

(3.21) 

This compares with relation (2.26) in [17] for the choice T = k + 2 and s = 1. 
In other words, the state sum of n r a e v  and Vir0 should be compared with the 
(absolute) square of the state sum of Witten for the ChernSimons theory. Note that 
our state sum is independent of any orientation, while the definition for the Chern- 
Simon theory depends of a choice of the orientation. In fact there is a rigorous 
definition [12] r q ( M )  for the state sum of Witten's theory such that for oriented M 
T ~ ( M ) ~ ~ ( - M )  = lrq(M)l* = Z ( M )  (141. 

2 . 2 T S  w - 2 -  - w  _ ,  
r r 
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